
Advanced Design System 2002

HDL Cosimulation

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.

Acknowledgments

ModelSim HDL simulator is a trademark of Model Technology Incorporated

Verilog is a registered trademark of Cadence Design Systems

NC-SIM is a trademark of Cadence Design Systems
ii

Contents
1 HDL Cosimulation

Basic Requirements ... 1-1
Basic Design Flow .. 1-2
Theory of Operation ... 1-3
Supported HDL Data Types.. 1-4
Bidirectional HDL Ports .. 1-5
Precision For Bit-Vector Type Ports .. 1-5
ADS Generated Combinational and Sequential Logic.. 1-6
Time-Specified Signals in User HDL Code... 1-7
HDL Simulator Licenses ... 1-8
HDL Cosimulation Components and Their Parameters.. 1-8

HdlSrcFile ... 1-9
Inputs.. 1-10
InputPhases ... 1-11
InputPrecisions... 1-11
Outputs... 1-11
OutputPrecisions .. 1-12
HdlModelName... 1-12
HdlLibrary ... 1-12
HdlSimulatorGUI... 1-13
CmdArgs .. 1-13
IterationTime... 1-14
TimeUnit ... 1-14

Index
iii

iv

Chapter 1: HDL Cosimulation
Advanced Design System’s HDL Cosimulation feature allows you to simulate
components represented in a hardware description language (HDL) in the same
schematic along with other Advanced Design System components. This integrated
capability gives you complete design flexibility, and complements other Advanced
Design System modules, including DSP Synthesis and Digital Filter Designer.

The ability to design all portions of a communications product in one integrated
environment can eliminate design errors resulting from disconnects among various
design teams. By being able to cosimulate with HDL designs, you can easily
incorporate your existing HDL intellectual property into new designs.

With HDL Cosimulation, you can test hardware defined in HDL with a DSP
algorithm, or use an algorithm written in HDL within an existing ADS design. Both
VHDL and Verilog HDL are supported. Agilent Ptolemy provides the signal
processing simulation, while either the ModelSimTM HDL simulator from Model
Technology Incorporated, Verilog® XL from Cadence® Design Systems, or NC-SIM
from Cadence® Design Systems simulates the HDL code. This cosimulation
capability in one design environment makes it easy to test HDL components along
with complex ADS system designs and see the effect on the entire system.

Basic Requirements
HDL Cosimulation is an optional feature of Advanced Design System. To run it, you
need to have the following:

• Agilent Ptolemy simulator

• One of the following:

• ModelSim/PLUSTM EE V5.2e or higher

• Verilog® XL Version 3.11 or higher

• NC-SIM Version 3.2 or higher
Basic Requirements 1-1

HDL Cosimulation
Basic Design Flow
The following graph shows the basic HDL Cosimulation design flow:

Figure 1-1. HDL Cosimulation Design Flow

User’s
Code

ADS DSP
Synthesis

HDL Code

or

Cosimulate Design
from ADS

Component
Use HDL Cosimulation
1-2 Basic Design Flow

Theory of Operation
With the HDL Cosimulation feature, Agilent Ptolemy has been configured to
cosimulate with either the ModelSim, VerilogXL, or NC-SIM HDL simulator. In this
use model, you first create the HDL design. This design may be created using
Advanced Design System’s DSP Synthesis, independently by you, or by employing
existing intellectual property. The design must be compiled and it is recommended to
test the simulation with ModelSim, VerilogXL, or NC-SIM before cosimulation.

If the code is not compiled, you can use ADS to compile the code before cosimulation.
Cosimulation requires information regarding the VHDL entity or Verilog module that
you want to cosimulate with. This is used to generate HDL wrappers that incorporate
user code and C-interface code to create an inter-process communication (IPC) link
between ADS and the HDL simulator.

The cosimulation can be run in graphical user interface mode to monitor the HDL
simulation. It can also be run in the background processing mode.

HDL Cosimulation uses the Agilent Ptolemy Synchronous Dataflow (SDF) domain, in
which numeric signals are consumed and produced by the HDL cosimulation
component. There is no timing information communicated between the ADS and the
HDL simulator. ADS sends data into the HDL simulator and gets data back without
any knowledge of the HDL timing.

HDL Cosimulation does not use the Agilent Ptolemy Timed Synchronous Dataflow
(TSDF) domain. Since the HDL cosimulation component acts as an Agilent Ptolemy
numeric component, any timed data from other Agilent Ptolemy components (such as
a GSM modulator) will be converted to numeric at the HDL cosimulation
component’s input.

The HDL cosimulation component is a numeric component. But since the HDL
simulation is time driven, it is initiated at every fixed interval for each firing of the
HDL cosimulation component in ADS. The time scale used by the HDL simulator is
independent of the ADS simulation.

Each time the HDL cosimulation component is fired, the HDL simulator receives
input values from other ADS components and uses them to perform the HDL
simulation. Once the HDL simulator is finished with its processing, it passes the
simulation results back to ADS. These passed values are then the inputs for other
ADS components, and thus the simulation cycle continues. This cycle repeats as
many times as the scheduler requires. Each time the HDL cosimulation component is
fired, the HDL simulation duration is determined by the value of the IterationTime
parameter (see “IterationTime” on page 1-14) in the HDL cosimulation component.
Theory of Operation 1-3

HDL Cosimulation
You must determine how long the HDL simulator should run before its outputs are
sent back to the HDL component. This timing information should not be confused
with the timing used in other Agilent Ptolemy timed components.

From the HDL simulator engine’s point of view, the ADS input interface is viewed as
forcing values onto the ports. At the output interface of the HDL cosimulation
component, the results are converted back into ADS format and sent to the
connecting ADS component.

You can specify the HDL simulation to run until the HDL simulator has no more
events to process by specifying a negative iteration time. Using this method, the
outputs are guaranteed to be stable since there are no more events left in the
simulator that might change them. This method is less efficient than the fixed
positive iteration time method, as the HDL simulator must be monitored to
determine when all events have been processed. Also, it will not work for certain
HDL models where some designs never run out of events, such as those with internal
clock signals. When a negative iteration time is specified for a Verilog module, a
VHDL wrapper is used to instantiate the Verilog module.

Supported HDL Data Types
The number of data types supported in Agilent Ptolemy is smaller than the number
of data types supported by VHDL. To support the large set of types that you can have
in VHDL, a mapping strategy is followed. Table 1-1 shows the types supported.
Agilent Ptolemy supports all of the types from the IEEE standard VHDL library.

Note Only bit-vector types are supported in the current release.

Table 1-1. Mapping Between the VHDL and Agilent
Ptolemy Data Types

VHDL Ptolemy

Bit fix

Bit_vector fix

Signed fix

Std_logic fix

Std_logic_vector fix
1-4 Supported HDL Data Types

Record and multi-dimensional array types in VHDL, are not supported. Verilog
module ports have types that can only be either bit or bit vector type and they are
mapped onto the Agilent Ptolemy fix type ports.

Bidirectional HDL Ports
For a bidirectional VHDL port, two ports are created on the cosimulation model. One
port is an input port named <VHDL portname>In, while the other port is an output
port named <VHDL portname>Out. The input data on the inout type port is applied
by ADS for the first half of the HDL iteration time and then the signal value is
changed to a tri-state condition. You can drive the output data on an inout type port
only during the second half of the HDL iteration time, when the value has been
changed to a tri-state condition by ADS. You have to set the inout port to a tri-state
condition during the first half of the HDL iteration time period, so that ADS can drive
the new input data value on the inout port.

Bidirectional ports are not supported in Verilog cosimulation.

Precision For Bit-Vector Type Ports
Bit-vector type HDL ports that get mapped to fixed type port require precision for
data conversion. The precision for inputs and outputs is specified in the parameter
named “Inputs” on page 1-10 and for outputs “Outputs” on page 1-11.

The precision for a port is specified as two integers separated with a dot (for example
“2.14”). The first part is the number of bits used for representing the integral part

Std_ulogic fix

Std_ulogic_vector fix

Unsigned fix

Ux01 fix

Ux01z fix

X01 fix

X01z fix

Table 1-1. Mapping Between the VHDL and Agilent
Ptolemy Data Types

VHDL Ptolemy
Bidirectional HDL Ports 1-5

HDL Cosimulation
and the second is the number of bits used for representing the fractional part of the
value on the port.

The arithmetic type by default is two’s complement. To specify an unsigned
arithmetic type, append u to the precision specification. For example, an unsigned
2.14 can be specified as 2.14u.

To repeat a particular precision specification you can use square bracket notation.
For example, 2.14u 2.14u 2.14u 1.2 3.4 3.4 can also be represented as 2.14u[3] 1.2
3.4[2].

The least significant bit (LSB) of the fixed data will always be assigned to the lowest
indexed element, and the most significant bit (MSB) will always be assigned to the
highest indexed element of the HDL vector port. Since the fixed data bit has only two
possible values, 0 and 1, the values x, u, z, -, w, and l for nine-state std_logic types are
mapped to 0 and the value h is mapped to 1.

ADS Generated Combinational and Sequential Logic
The Advanced Design System DSP Synthesis Library contains a mixture of
components, some clocked and some not. The Clock and Set pins on the clocked
components, such as a latch or a register, can be left unconnected. When these pins
are left unconnected, an automatic signal is sent to those pins.

When the ADS DSP Synthesis tool is used to generated HDL code, the resulting
model may have Clock and Set pins. The HdlCosim component has pins named Clock
and Set, which are modeled as optional pins, meaning you can leave them
unconnected. Clock and Set must be part of your Inputs specification, so that they
will be processed as mentioned in the section “Inputs” on page 1-10.

If you connect any signal to Clock and Set pins, that signal will be passed to the HDL.
If you leave the pins unconnected, the default Clock and Set signals will be driven on
the Clock and Set HDL ports.

The default clock is of a 50% duty cycle and has a period equal to the HDL iteration
time. The positive clock edge occurs at IterationTime/2. The default value for the Set
pin during the first iteration is a logic low at 1/4 times the HDL iteration time, a logic
high at 3/4 times the HDL iteration time, and a logic high for iterations after that.

Since this feature is provided to accommodate Advanced Design System-generated
HDL code, the same rules apply if your HDL code has pins named Clock and Set.
1-6 ADS Generated Combinational and Sequential Logic

The timing of application of inputs for the HDL code generated for a mixed logic is
crucial. For example consider a multiplexer (non-clocked, or in general any
combinational logic) followed by a latch (clocked, or any sequential logic). The input
multiplexer would be triggered the moment input is applied and would produce
results with zero delay. If the following component is a clocked component (for
example, sequential logic like a latch), then it will be triggered during the same
iteration cycle at the positive edge of the clock. So, in the above example, the
multiplexer and the latch will be triggered in the same clock cycle. In the
corresponding fixed-point design, the multiplexer followed by a latch (Clock and Set
unconnected) would fire the multiplexer in one cycle and the latch in the next,
producing a delay of one cycle. The HDL cosimulation results will appear one cycle
earlier when compared to the equivalent ADS component simulation results.

To match the results, the inputs to the HDL cosimulation block have to be delayed
until after the positive edge of the clock or IterationTime/2. The inputs will be applied
to multiplexer or combinational logic after the positive clock edge. The latch will latch
this result only in the next firing of the HDL cosimulation block or the next positive
clock edge (the automatic clock has one positive clock edge per firing).

The delay for each input ports is specified in the parameter “InputPhases” on
page 1-11.

Time-Specified Signals in User HDL Code
When HDL code has internal clocks or time-specified signals, for example, wait
statements in VHDL code, the HDL cosimulation may keep running until all the
events in the user HDL code are processed. The number of events generated in user
HDL code can be infinite, for example, when you have an internal clock.

You can avoid using an internal clock and use the ADS “clock” instead (refer to “ADS
Generated Combinational and Sequential Logic” on page 1-6, above). But if this is not
possible, then infinite event processing can be avoided if you know how long the HDL
simulation needs to run to complete the cosimulation, with all of the ADS iterations.
Different simulators have different mechanisms to break a simulation after a certain
simulation time. Here is an example using ModelSim:

1. Use the ModelSim simulator to create a file called test.do under your project’s
data directory.

For example, test.do may look like this:

run 11000 quit -f
Time-Specified Signals in User HDL Code 1-7

HDL Cosimulation
2. Then set CmdArgs = “-do test.do” (refer to “CmdArgs” on page 1-13) on the
HdlCosim component block.

This will stop the simulation after 11000 ns.

The total run time can be calculated as equal to:

The number of ADS iterations (depends on the DF controller setup and the
different sinks used in the design) multiplied by the IterationTime specified on the
HdlCosim block.

Alternatively, you can also open the ModelSim UI mode and use multiple run 100
commands to see how long it takes before the “ADS has completed its simulation ... ”
message shows up in the ModelSim UI. This time can then be used to create the
test.do file.

Do not use the run -all command, which will process all the events in the HDL
simulation.

HDL Simulator Licenses
The HDL simulator can only be invoked for one HDL primary design unit, like an
entity or a module. So for each HDL cosimulation model, a different HDL simulator is
invoked, which uses an independent license. Currently, there is no way to
save/restore the state from one entity to another. However, you can collect all the
adjacent HDL cosimulation models into one top-level HDL entity and generate one
HDL cosimulation model for that entity.

The ADS HDL Cosimulation feature has an independent license. Only one license is
required for a design that has more than one HDL cosimulation model.

HDL Cosimulation Components and Their
Parameters
HDL cosimulation components can be found in the HDL Blocks palette or library
(Insert > Component > Component Library > HDL Blocks). The component for
cosimulation with ModelSim EE is called HdlCosim, the VerilogXL cosimulation
component is called VxlCosim, and the NC-SIM component is called NCCosim.

ModelSim SE/EE needs compiled HDL code before simulation. If the user code has
not been compiled, HDL cosimulation can compile the user code before cosimulation
1-8 HDL Simulator Licenses

or use existing compiled HDL code depending on the HdlSrcFile and HdlLibrary
settings. The process is further simplified for ADS-generated Verilog code.

Note NC-SIM cosimulation uses ncverilog for compilation and simulation. For
VHDL cosimulation, wrap the VHDL code with a Verilog module. Refer to the
NC-SIM manual for information on using ncverilog to simulate VHDL code made
part of Verilog code.

The components have one multi input and one multi output fixed-data type port.
They also have two more input pins called Clock and Set, both single bit. They are
processed or only read if they are part of the “Inputs” on page 1-10 parameter
specification; otherwise they are ignored. If they are part of the Inputs parameter, the
behavior is the same as explained earlier in the section “ADS Generated
Combinational and Sequential Logic” on page 1-6.

Note Clock and Set must not be part of the inputs that are being connected to the
multi input port.

The components are useful to cosimulate only with HDL components having either
bit or bitvector type ports, or port types that get mapped to a fixed data type port as
shown in Table 1-1. You cannot cosimulate, for example, VHDL components with
ports of integer or real data types. This is not a major limitation, since most of the
practical HDL models will always have bit or bitvector type ports.

HDL cosimulation model has parameters that enable you to control cosimulation
with the HDL simulator. The following sections describe the parameters that require
user input.

HdlSrcFile

This can be specified in either of the following two ways:

• For ADS-generated HDL, use the generated compilation script: Upon HDL
generation, the compilation script can be found under your project’s
synthesis/vhdl or synthesis/verilog sub-directory, typically called as
compile_vhdl or compile_verilog, respectively (if HDL code was generated on
WIN32 platform, then the file will have a .bat extension). By default, if
HdlSrcFile=””, cosimulation will look for a compile_verilog file under the
HDL Cosimulation Components and Their Parameters 1-9

HDL Cosimulation
current project’s synthesis/verilog directory. (See iir_lp_hdlcosim.dsn in the
example project iir_filter_prj.) You can also explicitly specify the compilation
script to use, as in the examples iir_lp_adsvhdl.dsn and iir_lp_adsvlog.dsn.

• For user HDL code that is not generated using ADS, the HDL must be specified
as shown in the example design iir_lp_userhdl.dsn. Here, the HdlSrcFile must
be the file that contains the VHDL entity or Verilog module information that
you want to cosimulate with.

When you use ModelSim SE/EE cosimulation (HdlCosim) and have not
compiled the code, you must specify any other HDL files on which the first file
in HdlSrcFile depends on. The HDL files can be specified after the first file
using space as the separator (see iir_lp_userhdl.dsn). The files will be compiled
at the beginning of the simulation in the reverse order of the specification. A
work library is created automatically under project’s data directory where all
the compiled code is saved.

In the case of VerilogXL cosimulation (VxlCosim) and NC-SIM cosimulation
(NCCosim), all the files required for simulation must be specified as mentioned
above. In the case of NC-SIM cosimulation (NCCosim), you can use
pre-compiled libraries as described in the NC-Verilog Reference manual.

Inputs

This parameter lists the names of the input ports of the HDL model. All the HDL
input port names that need to be updated from ADS must be specified.

If the HDL model is generated using ADS DSP Synthesis tool, it may have pins
named Clock and Set. These pins must be specified in the Inputs parameter for
correct results.

This list is used to make the input connections between the ADS ports and the HDL
ports. The BusMerge component must be used on the input port when there is more
than one input to be connected. The first (last) input port in the list is connected to
the bottom (top) most input port on the BusMerge, and so on. The BusMerge must
have a number of input ports equal to the number of strings specified in the Inputs
string array, except if the model has pins named Clock and Set. The BusMerge
component must not have pins corresponding to Clock and Set, instead they must be
connected to the Clock and Set ports of the ADS HdlCosim component. To use
automatic Clock and Set signals, leave the Clock and Set ports unconnected or
hanging.
1-10 HDL Cosimulation Components and Their Parameters

InputPhases

This parameter lets you delay the application of the input to the HDL model. It is an
array of integers. The time unit is the same as specified by the TimeUnit parameter,
described later. The InputPhases parameter specifies the delay for the application
inputs during an iteration, as explained in the section “ADS Generated
Combinational and Sequential Logic” on page 1-6. The delay specified for the Clock
signal is ignored if the Clock signal is not connected and an automatic clock is being
used.

If the Clock and Set are left unconnected and the InputPhases parameter is not
specified, the inputs are automatically delayed for 3/4 times the IterationTime
specified during each cycle for the reasons mentioned in earlier section “ADS
Generated Combinational and Sequential Logic” on page 1-6. If any phase delay
values are specified by the user, those values will be used.

In the case of the ADS HdlCosim component, the order of the delay specification must
be the same as the order of the input names specified in the Inputs parameter.

InputPrecisions

This parameter specifies the precision and arithmetic type to be used for a particular
input.

In the case of the ADS HdlCosim component, the order of the precision specification
must be the same as the order of the input names specified in the Inputs parameter.

Precision and arithmetic type specification was explained earlier in the section
“Precision For Bit-Vector Type Ports” on page 1-5.

Outputs

This parameter lists the names of the output ports of the HDL model. The names
should be in the same order and in the same case as they appear in the HDL wrapper
code, which is generated after performing the model building step.

This list is used when making the output connections between the Agilent Ptolemy
ports and the HDL ports. The BusSplit component is used on the output port. The
first (last) output port in the list is connected to the bottom (top) most output port on
the BusSplit, and so on. The BusSplit component must have a number of output ports
equal to the number of strings specified in the Outputs string array.
HDL Cosimulation Components and Their Parameters 1-11

HDL Cosimulation
Note In the case of an inout VHDL port, specify the port name in the Inputs as well
as the Outputs parameter.

OutputPrecisions

This parameter specifies the precision and arithmetic type to be used for a particular
output.

In the case of the ADS HdlCosim component, the order of the precision specification
must be the same as the order of the output names specified in the Outputs
parameter, see “Outputs” on page 1-11.

Precision and arithmetic type specification was explained earlier in the section
“Precision For Bit-Vector Type Ports” on page 1-5.

HdlModelName

This is the name of the HDL entity or module to cosimulate with.

HdlLibrary

This parameter does not exist for VerilogXL cosimulation (VxlCosim) and NC-SIM
cosimulation (NCCosim).

In the case of ModelSim SE/EE cosimulation (HdlCosim), this file specifies the library
from which the compiled HDL module or entity must be loaded. This parameter can
control the compilation in either of the following ways:

• If the code needs to be compiled, HdlLibrary must be empty. This will compile
the code under work library. For any following re-simulation of the same design,
the HDL code need not be recompiled. To turn off compilation, you can specify
HdlLibrary=work.

• If you have already compiled the code in another library, for example, hdllib,
then only the file that has the entity or module specification needs to be
specified for HdlSrcFile, and HdlLibrary should be set to hdllib.

Before starting ADS, the MODELSIM environment variable has to be set to a
modelsim.ini file that has the mapping information for hdllib.
1-12 HDL Cosimulation Components and Their Parameters

If MODELSIM is not set, you can specify the mapping for the library using “=”,
for example HdlLibrary=“hdllib=/user/xyz/hdllib”. You can specify more than
one library by separating them using spaces, and can specify mappings for any
of the libraries using “=” as explained earlier.

HdlSimulatorGUI

This parameter determines the user interface mode of the HDL simulator. If the
HdlSimulatorGUI is On, HDL simulator is started up with its graphical user
interface on. You may view the progress of the simulation, graph signals, and even
edit values while the simulation is running.

The ModelSim command Restart is not supported during cosimulation. To restart
HDL cosimulation, quit and restart the ADS simulation.

Note If the HdlSimulatorGUI is On and IterationTime is negative, use run -all in
ModelSim to perform cosimulation. The other run commands will only increment the
HDL simulation time and will not cosimulate.

If the HdlSimulatorGUI is Off, the simulator is run in the background. ADS will start
up the HDL simulator, run the simulation, and close the simulator down at the end of
simulation, without user interaction.

CmdArgs

This parameter allows you to specify any special simulator command invocation
arguments required for simulation of the HDL model. This is useful in the case of
VHDL cosimulation using the HdlCosim component when generics are to be
initialized.

For example, when using ModelSim, a run.do file can be created and put in the /data
subdirectory of the project as follows:

run -all

quit -f

Then the syntax of the CmdArgs would be:

CmdArgs = “-do run.do”
HDL Cosimulation Components and Their Parameters 1-13

HDL Cosimulation
In the case of NC-SIM cosimulation, you can use “-R” to avoid the recompilation of
HDL code.

IterationTime

IterationTime is the time that the HDL simulation is run during each firing of the
HDL cosimulation component. If the integer value provided to it is positive, the HDL
simulator will simulate for the specified number of time units (where the time units
are specified by the parameter “TimeUnit” on page 1-14) and then send the data to
ADS. This does not check to see if there are any events left to be processed in the
simulator. This feature is useful if you are running a model whose output data is to be
sampled periodically at a predetermined time.

If the value is negative, the HDL simulator is run until all the events are processed.
The magnitude of the value specifies the minimum amount of time to run before
checking to see if there are any events left to process. The output data is read after
the event queue becomes empty. This facility can slow down the simulation due to the
overhead of monitoring the simulation event queue. The lower the magnitude, the
slower is the execution, because the event queue has to be polled more often. This
facility is useful when the time the model takes to provide stable/correct data output
varies. This will not work for certain models that never run out of events, such as
those with internal clock signals.

The value can never be specified as 0. If it were 0, the simulation will stop with a
range error flagged.

When a negative iteration time is specified for a Verilog module, a VHDL wrapper is
used to instantiate the Verilog module. Negative iteration time will not work with
VerilogXL cosimulation.

TimeUnit

This parameter tells the HDL simulator the HDL simulation time resolution unit to
be used. Possible settings are fs, ps, ns, us, ms and sec.
1-14 HDL Cosimulation Components and Their Parameters

Index

H
hdl cosimulation, 1-1
Index-1

-2

	Contents
	Chapter 1: HDL Cosimulation
	Basic Requirements
	Basic Design Flow
	Theory of Operation
	Supported HDL Data Types
	Bidirectional HDL Ports
	Precision For Bit-Vector Type Ports
	ADS Generated Combinational and Sequential Logic
	Time-Specified Signals in User HDL Code
	HDL Simulator Licenses
	HDL Cosimulation Components and Their Parameters
	HdlSrcFile
	Inputs
	InputPhases
	InputPrecisions
	Outputs
	OutputPrecisions
	HdlModelName
	HdlLibrary
	HdlSimulatorGUI
	CmdArgs
	IterationTime
	TimeUnit

	Index

